SUPPORT IS THE RELIABLE INDICATOR OF GLOBAL MOTOR PERFORMANCE IN A ONE-MONTH-OLD CHILD
Ewa Poprawska
Ewa Gajewska
Andrzej Kluczyński
Marek Pietrzak
Magdalena Sobieska

1Greater Poland Center for Child and Adolescent Neurology in Poznan, Poland
2Department of Rheumatology and Rehabilitation, Poznan University of Medical Sciences, Poznan, Poland
3Department of Rehabilitation, University School of Physical Education, Poznan, Poland

SUMMARY
Introduction
Knowledge of proper psychomotor development of a child is a prerequisite for correct diagnosis and introducing the effective therapy. No golden standard method is available for quick and reliable assessment of the motor performance at a given moment of infant’s life.

Aim
On the basis of the available literature a self-developed sheet for the assessment of the upper extremity function in one month old children was suggested and its practical application was verified.

Subjects and methods
The assessment included 99 infants, without any concomitant diseases, genetic or metabolic disorders. The neurologic assessment was based on the Denver II Development Screening Test. Physiotherapist assessed all children according to a self-developed assessment sheet.
Results
The analysis of the child’s behavior in prone position is a better diagnostic criterion than in supine position. High compliance was shown with the neurologist’s assessment. Whole assessment was shown to be repeatable and reliable.

Conclusions
The assessment of support should be the basis of screening of one-month old infants. The study showed that the swordsman pattern is not a necessary criterion for the proper assessment of motor development in the upper extremity function.

Keywords: motor performance, upper extremity, assessment of the upper extremity function

Date received: June 30th 2016
Date accepted: July 14th 2016

Introduction
The knowledge of proper psychomotor development of a child for professionals in pediatric physiotherapy is a prerequisite for correct diagnosis and an effective therapy. Authors of numerous publications emphasize the significance of the qualitative assessment (based on the functional patterns of muscles and the physiological arrangement of the joints) of the mutual arrangement of individual body parts and not just of the quantitative assessment (global: performs/fails to perform). Qualitative assessment is much more precise and therefore allows detection of all abnormalities and early correction of possible developmental disorders, especially that children with disordered development often perform a given activity, but following an abnormal pattern (Orth 2011; Janssen et al. 2012). Moreover, it has been proved that qualitative assessment of spontaneous motor skills has a high predictive value for subsequent neurological and psychological assessment (Hadders-Algra 2007; Butcher et al. 2009).

Many researchers emphasize that the analysis of the quality of movement is essential for the proper diagnosis, assessment and predicting further development of the child. They also point out that there are many methods of the overall assessment of development. However, experts do not quite agree what elements for this assessment should be included in the battery of tests (Knudson and Morrison 2002; Johnson and Marlow 2006; Heineman 2008; Janssen et al. 2009). The available tools are mostly intended for the global assessment of children’s motor skills (such as Campbell et al. 1993; Persson and Stromberg 1995; Folio and Fewell 2000; Bayley 2007; Henderson et al. 2007; Brown and Lalor 2009). There are few qualitative tools for a detailed assessment of the upper extremity function, particularly there are no tools that could be
used as screening tests for healthy children. The existing measuring instruments are typically intended for older children and those with developmental disorders and not for newborns or infants. Examples of such undoubtably valuable tools include MACS and GMFM scales (Palisano et al. 1997; Eliasson et al. 2006; Carnahan et al. 2007; Gunel et al. 2009; Hidecker et al. 2012;).

Motor development in the first months of life is essential to the development of specific patterns related to the function of the grip. This is preceded first by the proper formation of the axial organ (head and the spine), through the support function of the upper extremities, until the development of the grip function, which is necessary for the acquisition and improvement of further skills. Undisturbed function of the upper extremities in the first months of a child’s life determines the correct support, and in subsequent stages of development affects the development of skills such as creeping, walking on all fours, oblique or straight sitting, which determine the increasing autonomy of a child (Orth 2011).

Generally, on the basis of literature one can point out the elements of the postural and motor skills assessment, which should be taken into account when examining a child at the age of one month, and which are the first stages of the development of the upper extremity function considered separately.

One month old child in the prone position does not use any base of support, but rather the contact surface. In time, due to the shift of the center of gravity caudally the child begins to move the upper extremities more towards the front in the cephalic direction. A one month old child achieves support (and this is a quantitative, global pattern) on the front parts of the forearms (in the area close to wrist joints) – and this is an element of the qualitative assessment. At this stage of development shoulder joints are protracted. The arms are adducted to the trunk and still set in internal rotation and in retraction, which means that the elbow joints remain at the back of the line joining the shoulders and flexed. Gradually, however, the upper extremities reach towards the sagittal plane. The forearms slightly move forward, but still remain below the shoulder line and in prone position. The hands are slightly clenched in a fist and in ulnarization (facing outward), the thumbs are no longer adducted and hidden inside, but they are outside as the flexion of the fingers is also lesser. In this period the shoulder joints are still hinge joints, not ball and socket joints, which means limited freedom of movement of the arms (absence of complete abduction). The shoulder blades are still positioned distally towards the spine (Cioni and Mercuri 2007; Orth 2011).

It is worth noting that many of the elements are assessed by contrast with the assessment of a newborn baby, and therefore the descriptions contain the repeating phrases “smaller than…” or “less than…”

An infant at the age of one month, in supine position, overloads the facial side of the shoulder joint and the trunk more, and it raises them above the surface at the occipital side. The posture is asymmetrical and unstable. The shoulder joints are raised and extended forwards (still remain protracted). After the age of one month an infant is able to consciously focus its eyesight for a longer period of time. This shows up in the movement pattern referred to using the term: the swordsman’s position with an extended upper extremity at the side, towards which the eyesight is focused and with the arm abducted from the trunk and rotated outside. The hand of the extremity is slightly clenched in a fist, with the thumb facing outwards. However, at the side opposite to the direction of the eyesight, the upper extremity is slightly flexed in the shoulder joint, the arm is slightly abducted and the hand is also slightly clenched in a fist (Vojta and Peters 2007; Orth 2011).
Aim
On the basis of the available literature a self-developed sheet for the assessment of the upper extremity function in one month old infants was suggested and its practical application was verified.

Subjects and methods
The investigated group included 99 one month old infants, 45 females, admitted to the clinic of neurology. The reason for the visit to a neurologist could be a referral from a pediatrician, and the most common was prematurity and the positive medical history. In the case of 13 children the parents visited the neurologist due to their disturbing concerns. On average children in the investigated group were born at week 38 ± 3, the mean body weight was 3200 ± 715 g, the mean body length was 54 ± 4 cm, the mean head circumference was 33 ± 2 cm, the mean chest circumference was 33 ± 3 cm. The infants subjected to functional assessment were healthy, without any concomitant diseases, while children with genetic and metabolic disorders were excluded from the study. There were 74 children born at term (the mean week of pregnancy was 39 ± 1), and 25 children born prematurely (the mean week of pregnancy was 34 ± 3). The corrected age was calculated in the case of the latter group. The majority of infants (47) were born vaginally, 35 by caesarean section, 13 with the use of a vacuum and 4 by forceps delivery. During the visit to the neurologist, all children were subjected to trans-fontanel ultrasonography. In 64 children the ultrasound image was normal and in 35 abnormal. Among 35 children with an abnormal image, three children suffered intraventricular haemorrhage due to perinatal complications, each with IVH of a different grade (1, 2, 3 grade).

Procedure
A neurologist was the examining and diagnosing physician. Two neurologists with 20-years of clinical experience participated in the study. A neurologist assessed all children at 1 month, basing on the Denver Development Screening Test II (DDST II) (Ślenzak and Michałowicz 1973; Drachler et al. 2007) and the assessment of the reflexes, hypotonia/hypertonia, and symmetry, as suggested by Touven (Touven 1976). One of the assessed elements is the assessment of the development of fine motor skills. It takes into account the assessment of individual functions of the upper extremity in relation to the age of the child, including bringing arms together in the center line of the body. After conducting the examination neurologists classified a child into one of three groups: normal (no neurological abnormalities), suspected (not requiring rehabilitation – for observation) and abnormal. A child was classified as abnormal if it exhibited clear neurological disorders, such as increased (hypertony) or decreased (hypotony) muscle tone accompanied by abnormal reflexes and failure to perform tasks in the area of motor skills for a given age group in the DDST II test. A child was classified into the suspected group – not requiring rehabilitation – for observation if it exhibited mild symptoms of neurological disorders, such as mild muscle tone regulation disorders, slight reflex dysfunction, minor developmental asymmetry and a delay in the area of motor skills in the Denver II Development Screening Test. The assessment of the functional development was carried out by a physiotherapist, who classified the children into one of two groups: normally developed (correct) or abnormally developed (incorrect). Each child was quantitatively and qualitatively examined in two positions: prone and supine positions. The quantitative assessment (global) included the swordsman’s pattern in the supine position (score 0 or 1). In the prone position the quantitative assessment referred to the support on the front part of the forearm (score 0 or 1). The qualitative assessment in the supine
position included: abduction with external rotation at the facial side of the shoulder joint, extension of the elbow at the facial side, flexion of the elbow joint at the occipital side, open hand at the facial and occipital sides, thumb facing outward, lesser flexion of fingers; all elements were always assessed on both sides (total maximum score = 12 points). The qualitative assessment in the prone position included: medium protraction of shoulders/less than in newborn babies, shoulder blade positioned less distally towards the spine, the arm leaving the front plane (aiming at the sagittal plane) lesser flexion of the elbow joint, forearm extended forwards – but below the line of shoulders, hands with lesser ulnarization, thumb release (thumb outwards), lesser flexion of fingers; all elements were always assessed on both sides (total maximum score = 16 points).

The entire time needed for the assessment was 10–15 minutes of the observation of spontaneous behavior of a child. An element to be considered as completed by a child had to be presented 3–4 times during the observation.

Inter-observer assessment of children at the age of one month was carried out. Two independent physiotherapists carried out simultaneous assessment of the functions of the upper extremities on the whole group of 99 children. They were only informed of the fact whether a child was born prematurely or at term, as corrected age was established for children born prematurely.

Statistical analysis
To compare the number of children who performed or not a given motor activity (0/1), Pearson’s Chi² test was used. The overall qualitative variables (in prone and supine positions) were expressed as medians and quartiles, and in the case of the two groups the intergroup differences were analyzed with the U Mann-Whitney test or with the Kruskal-Wallis test, where several groups were compared, assuming the significance level of p<0.05. The conformity of neurological and physiotherapeutic assessments was analyzed by non-linear logistic regression, and the comparison of assessments by two independent physiotherapists was performed with the weighted kappa method (MedCalc Statistical Software, version 13.1.0, Ostend, Belgium).

Informed consent was obtained from all of the subjects and the study was approved by the Research Ethics Committee of Poznan University of Medical Sciences and registered under no. 602/13 (13-06-2013). It conformed to all ethical issues included in the Helsinki Declaration.

Results
The analysis covered the impact of prematurity and sex on the development of the upper extremity and no statistically significant differences were found and therefore further investigation was conducted without the division according to sex and whether a child was born at term or prematurely.

Children were divided according to the Apgar scale (following the categories of 0–3, 4–6, 7–10) at 1 minute (median 10, lower quartile Q25 = 8, upper quartile Q75 = 10) and at 3 minute of life (median 10, lower quartile Q25 = 9, upper quartile Q75 = 10). At 5 and 10 minute of life, however, the Apgar score in all investigated children was 10. No impact on the Apgar on the development of a child’s hand function was shown.

Having analyzed the impact of risk factors on the development of the hand functions, such as co-occurrence with hyperbilirubinemia, respiratory distress syndrome, type of childbirth and the results of trans-fontanel ultrasonography, no statistically significant differences were found.

The analysis of particular elements of motor performance in the prone position revealed that the majority of children from the group assessed by a physician as normal, were also classified (which includes the assessment of the upper extremity functions)
as correct by the physiotherapist (Table 1). On the other hand, children assessed by a neurologist as developing improperly or suspected, were classified by the physiotherapist into the incorrect group. The conformity of neurological and physiotherapeutic assessments, analyzed with the method of non-linear logistic regression proved to be highly significant (Odds ratio = 22.00; Chi²(1) = 43.58, p<0.001).

The conformity of the overall neurological and physiotherapeutic assessments is also confirmed for the individual elements of the assessment; it is possible to indicate highly significant differences in the number of children performing or not an activity when broken down by neurological assessment.

Smaller differences between groups were observed for the swordsman pattern (abduction and external rotation of the upper extremity and with the elbow joint extended or flexed). Although the neurologist classified children as normal, a number of them did not perform this pattern.

It was shown that the inter-observer compliance was high, exact data is provided in the last column of Table 2.

Table 3 shows the results of total qualitative assessment, which consists of 16 elements in the prone position and 12 elements in the supine position. For these assessments the median with quartiles was given for the entire investigated group and subgroups distinguished by the neurologist, the suspected group was described using only quartiles and it was excluded from the statistical analysis due to the low number (n = 4). One can observe highly significant differences between groups classified this way (Mann-Whitney U-test).

### Table 1. Conformity of neurologic and physiotherapeutic assessment.

<table>
<thead>
<tr>
<th>Physiotherapeutic assessment</th>
<th>Neurologic assessment = normal</th>
<th>Neurologic assessment = suspected</th>
<th>Neurologic assessment = abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct</td>
<td>80</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>incorrect</td>
<td>1</td>
<td>2</td>
<td>13</td>
</tr>
</tbody>
</table>

Specific elements of quantitative and qualitative assessments, the examination results for the whole group and subgroups distinguished due to neurological assessment, the significance of differences between subgroups so divided, as well as the interobserver conformity are shown in Table 2. For both quantitative patterns, respectively in the prone and supine positions, as well as for the individual elements of the qualitative assessment, the number of children not performing or performing a given motor activity was given (0/1).

### Table 2. The group under examination according to the neurological assessment. The number of children who failed to perform or who performed a given element of motor development.

<table>
<thead>
<tr>
<th>Individual elements of physiotherapeutic assessment (0/1 not performing/performing)</th>
<th>Neurological assessment</th>
<th>The difference between subgroups, Pearson’s Chi² test</th>
<th>Interobserver assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The entire group, n = 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal, n = 81</td>
<td>Suspected, n = 4</td>
<td>Abnormal, n = 14</td>
</tr>
<tr>
<td>Global pattern in prone position (support)</td>
<td>15/84</td>
<td>6/75</td>
<td>9/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right shoulder in medium protraction</td>
<td>16/83</td>
<td>7/74</td>
<td>9/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left shoulder in medium protraction</td>
<td>17/82</td>
<td>7/74</td>
<td>10/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right shoulder blade positioned less distally from the spine</td>
<td>18/81</td>
<td>9/72</td>
<td>9/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left shoulder blade positioned less distally from the spine</td>
<td>18/81</td>
<td>8/73</td>
<td>10/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right arm reaching towards the sagittal plane</td>
<td>18/81</td>
<td>9/72</td>
<td>9/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. (cont.) The group under examination according to the neurological assessment. The number of children who failed to perform or who performed a given element of motor development.

<table>
<thead>
<tr>
<th>Individual elements of physiotherapeutic assessment (0/1 not performing/performing)</th>
<th>Neurological assessment</th>
<th>Interobserver assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The entire group, n = 99</td>
<td>Normal, n = 81</td>
</tr>
<tr>
<td>Left arm reaching towards the sagittal plane</td>
<td>19/80</td>
<td>8/73</td>
</tr>
<tr>
<td>Right elbow joint at lesser flexion</td>
<td>19/80</td>
<td>10/71</td>
</tr>
<tr>
<td>Left elbow joint at lesser flexion</td>
<td>19/80</td>
<td>9/72</td>
</tr>
<tr>
<td>Right forearm extended forwards – but below the shoulder line</td>
<td>18/81</td>
<td>9/72</td>
</tr>
<tr>
<td>Left forearm extended forwards – but below the shoulder line</td>
<td>18/81</td>
<td>8/73</td>
</tr>
<tr>
<td>Lesser ulnarization of the right hand</td>
<td>16/83</td>
<td>7/74</td>
</tr>
<tr>
<td>Lesser ulnarization of the left hand</td>
<td>16/83</td>
<td>7/74</td>
</tr>
<tr>
<td>Right thumb outwards</td>
<td>7/92</td>
<td>7/74</td>
</tr>
<tr>
<td>Left thumb outwards</td>
<td>7/92</td>
<td>7/74</td>
</tr>
<tr>
<td>Fingers of the right hand with lesser flexion</td>
<td>14/85</td>
<td>5/76</td>
</tr>
<tr>
<td>Fingers of the left hand with lesser flexion</td>
<td>14/85</td>
<td>5/76</td>
</tr>
<tr>
<td>Global pattern in the supine position (swordsman’s pattern)</td>
<td>31/68</td>
<td>21/60</td>
</tr>
<tr>
<td>Abduction of the right arm with external rotation in the shoulder joint at the facial side</td>
<td>29/70</td>
<td>19/62</td>
</tr>
<tr>
<td>Abduction of the left arm with external rotation in the shoulder joint at the facial side</td>
<td>32/67</td>
<td>22/59</td>
</tr>
<tr>
<td>Extension of the right elbow joint at the facial side</td>
<td>30/69</td>
<td>20/61</td>
</tr>
<tr>
<td>Extension of the left elbow joint at the facial side</td>
<td>33/66</td>
<td>23/58</td>
</tr>
<tr>
<td>Flexion in the right elbow joint at the occipital side</td>
<td>31/68</td>
<td>21/60</td>
</tr>
<tr>
<td>Flexion in the left elbow joint at the occipital side</td>
<td>27/72</td>
<td>17/64</td>
</tr>
<tr>
<td>Hand loosely clenched in a fist at the facial side</td>
<td>17/82</td>
<td>9/72</td>
</tr>
<tr>
<td>Hand loosely clenched in a fist at the occipital side</td>
<td>17/82</td>
<td>9/72</td>
</tr>
<tr>
<td>Right thumb outwards</td>
<td>13/86</td>
<td>6/75</td>
</tr>
<tr>
<td>Left thumb outwards</td>
<td>13/86</td>
<td>6/75</td>
</tr>
<tr>
<td>Fingers of the right hand with lesser flexion</td>
<td>12/87</td>
<td>5/76</td>
</tr>
<tr>
<td>Fingers of the left hand with lesser flexion</td>
<td>12/87</td>
<td>5/76</td>
</tr>
</tbody>
</table>
SUPPORT IS THE RELIABLE INDICATOR OF GLOBAL MOTOR PERFORMANCE IN A ONE-MONTH-OLD CHILD

It was observed that the global pattern in prone position (support) showed very high value of Chi$^2$ test, thus it was one of the main differences between children assessed as “normal” by the neurologist and those who were assessed “suspected” or “abnormal”. Therefore one more comparison was conducted: all particular elements analyzed in prone and supine positions were compared between children who performed support and those who did not. The results are shown in the Table 4.

When the investigated group was divided according to the presence or absence of support, the sum of the qualitative characteristics achieved by children is noticeably different: children who performed support properly reached at least the total assessment score of 10 in the prone position, while children who failed to perform support did not exceed the total assessment of 4. Most children in the supine position, who failed to perform support, also failed to perform any of the elements of motor

### Table 3. The investigated group divided according to the neurological assessment, with the exclusion of the suspected group (n = 4). The median and the quartile was given Me (Q25–Q75) for the total qualitative assessment in the prone and supine positions.

<table>
<thead>
<tr>
<th>Physiotherapeutic assessment</th>
<th>Neurological assessment</th>
<th>Mann–Whitney U–test</th>
</tr>
</thead>
<tbody>
<tr>
<td>entire group, n = 99 Me (Q25–Q75)</td>
<td>normal n = 81 Me (Q25–Q75)</td>
<td>abnormal n = 14 Me (Q25–Q75)</td>
</tr>
<tr>
<td>Total quality – prone position</td>
<td>16 (16–16)</td>
<td>2 (0–16)</td>
</tr>
<tr>
<td>Total quality supine position</td>
<td>12 (6–12)</td>
<td>9 (5–12)</td>
</tr>
</tbody>
</table>

### Table 4. The entire investigated group, divided in terms of the support performance; the number of children, who failed to perform or performed (0/1) individual elements of the qualitative assessment in the prone and supine positions, was given.

<table>
<thead>
<tr>
<th>Position</th>
<th>Individual elements of the qualitative assessment</th>
<th>Children who failed to perform support</th>
<th>Children who performed support</th>
<th>The difference between subgroups, Pearson’s Chi$^2$ test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prone</td>
<td>Medium protraction of the right shoulder</td>
<td>16/0</td>
<td>2/82</td>
<td>84.56; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Medium protraction of the left shoulder</td>
<td>16/0</td>
<td>3/81</td>
<td>78.55; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Right shoulder blade positioned less distally from the spine</td>
<td>16/0</td>
<td>3/81</td>
<td>73.20; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Left shoulder blade positioned less distally from the spine</td>
<td>16/0</td>
<td>3/81</td>
<td>73.20; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Right arm reaching towards the sagittal plane</td>
<td>16/0</td>
<td>3/81</td>
<td>73.20; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Left arm reaching towards the sagittal plane</td>
<td>16/0</td>
<td>3/81</td>
<td>73.20; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Right elbow joint at lesser flexion</td>
<td>16/0</td>
<td>4/80</td>
<td>68.42; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Left elbow joint at lesser flexion</td>
<td>16/0</td>
<td>4/80</td>
<td>68.42; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Right forearm extended forwards –but below the shoulder line</td>
<td>16/0</td>
<td>3/81</td>
<td>73.20; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Left forearm extended forwards –but below the shoulder line</td>
<td>16/0</td>
<td>3/81</td>
<td>73.20; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Lesser ulnarization of the right hand</td>
<td>16/0</td>
<td>1/83</td>
<td>84.56; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Lesser ulnarization of the left hand</td>
<td>16/0</td>
<td>1/83</td>
<td>84.56; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Right thumb release (right thumb outwards)</td>
<td>6/10</td>
<td>1/83</td>
<td>23.57; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Left thumb release (right thumb outwards)</td>
<td>6/10</td>
<td>1/83</td>
<td>23.57; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Fingers of the right hand with lesser flexion</td>
<td>14/2</td>
<td>1/83</td>
<td>69.71; p = 0.000</td>
</tr>
</tbody>
</table>
Table 4. (cont). The entire investigated group, divided in terms of the support performance; the number of children, who failed to perform or performed (0/1) individual elements of the qualitative assessment in the prone and supine positions, was given.

<table>
<thead>
<tr>
<th>Position</th>
<th>Individual elements of the qualitative assessment</th>
<th>Children who failed to perform support</th>
<th>Children who performed support</th>
<th>The difference between subgroups, Pearson's Chi² test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine</td>
<td>Fingers of the left hand with lesser flexion</td>
<td>14/2</td>
<td>1/83</td>
<td>69.71; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Global: swordsman's pattern</td>
<td>12/4</td>
<td>19/65</td>
<td>16.91; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Abduction of the right arm with external rotation in the shoulder joint at the facial side</td>
<td>12/4</td>
<td>17/67</td>
<td>19.16; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Abduction of the left arm with external rotation in the shoulder joint at the facial side</td>
<td>12/4</td>
<td>20/64</td>
<td>15.89; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Extension of the right elbow joint at the facial side</td>
<td>12/4</td>
<td>18/66</td>
<td>17.99; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Extension of the left elbow joint at the facial side</td>
<td>12/4</td>
<td>21/63</td>
<td>14.94; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Flexion in the right elbow joint at the occipital side</td>
<td>12/4</td>
<td>19/65</td>
<td>16.91; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Flexion in the left elbow joint at the occipital side</td>
<td>12/4</td>
<td>15/84</td>
<td>21.75; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Hand loosely clenched in a fist at the facial side</td>
<td>12/4</td>
<td>5/79</td>
<td>43.99; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Hand loosely clenched in a fist at the occipital side</td>
<td>12/4</td>
<td>5/79</td>
<td>43.99; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Right thumb outwards</td>
<td>12/4</td>
<td>1/83</td>
<td>62.56; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Left thumb outwards</td>
<td>12/4</td>
<td>1/83</td>
<td>62.56; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Fingers of the right hand with lesser flexion</td>
<td>12/4</td>
<td>0/84</td>
<td>69.14; p = 0.000</td>
</tr>
<tr>
<td></td>
<td>Fingers of the left hand with lesser flexion</td>
<td>12/4</td>
<td>0/84</td>
<td>69.14; p = 0.000</td>
</tr>
</tbody>
</table>

Discussion

There is little literature information about the function of the upper extremity in infants, particularly regarding the early period of life. The above-mentioned tools often show only the general image of the performance of a child, without specifying the upper extremity function, so they may not detect the function which is absent or performed incorrectly. They are mainly used in the global assessment or are intended for children with damage to the central nervous system, and from the point of view of a physiotherapist the global assessment is not sufficient. Therefore on the basis of

Figure 1. The total quality in prone position.

Figure 2. The total quality in supine position.
in case of doubts expressed by parents or
the general practitioner, and not only in
cases of positive medical history or known
neurological disorders. Such assessment
could also serve as a starting point for an
appropriate therapy.

Authors point out that since the middle of
the first trimester, when an infant develops
visual orientation and it starts to raise its
head and chest for a short period of time,
the development of the supporting function
of the forearm plays a crucial role. This is
a very important change at this stage of
development as along with the raising of
the head the upper extremities are for the
first time used as supporting organs, which
is a new global, postural pattern (Vojta and
Peters 2007).

On the basis of the available literature
(Vojta and Peters 2007; Orth 2011) a self-dea-
veloped sheet for the assessment of the func-
tion of the upper extremity in one month
old children was suggested. It presents, in
a very detailed way, subsequent skills, which
a child acquires with the progressive devele-
opment. The already described individual
movement patterns constitute the develop-
ment plan, which is widely accepted in the
literature, and the rate of implementation
of this plan in the first months of life ap-
pears to be strongly differentiated. How-
ever, it should be noted that the delay or
non-occurrence of one of the permanent
elements may indicate abnormal develop-
ment, and the proposed sheet is to become
the basis for screening and assessment of
children with a history of perinatal disor-
ders or disorders of the nervous system.
It could also contribute to the standardiza-
tion of observations carried out by doctors
and therapists to correctly plan a therapy
and assess its effects.

The study shows that the swordsman
pattern, described in the literature and
presented as one of the elements occur-
rin the child’s development at the age
of one month is not a necessary feature
in the proper development of the upper
extremity function. Although this pattern
is always mentioned in the literature on
physiotherapy, many children classified by
a neurologist as healthy, do not manifest
this element. Children who failed to per-
form support (n = 16), in their majority also
failed to manifest the swordsman pattern
(n = 12), while among those who performed
support (n = 84), and were thus regarded
as completely healthy, still some (n = 19)
failed to manifest this pattern.

It turns out that the analysis of the child’s
behavior in prone position is a better di-
agnostic criterion. High compliance in this
respect was shown with the neurologist’s
assessment. In case of support on the belly,
a child is forced to overcome the force of
gravity, the center of gravity is at that time
in the area of the sternum, so the position
on the belly seems to be (at least initially)
less comfortable than the back for a child
at the age of one month. The proportions
of the body and the absence of the base
of support do not allow free raising and
isolated movements of the head in this
period. However, it is precisely this position
that constitutes a good diagnostic criterion:
the children who performed support also
show correct motor elements in the supine
position.

It can therefore be suggested that the
assessment of support, taking into account
qualitative elements, should be the basis
of screening. A child showing any abnor-
malities should be carefully supervised,
diagnosed in detail and depending on the
degree of the abnormality, subjected to
appropriate early treatment.

Position of the thumbs do not seem to be
such an important feature differentiating
children as assessed by the neurologist,
although it often concerns general practi-
tioners and parents. However, the release
of other fingers both in the supine and
prone position seems to be an initial symp-
tom of the further correct support function
(Gajewska et al. 2013; Gajewska et al. 2015)
and it has proven to be highly significant
both for the classification according to the neurological assessment and according to the performance of support.

Therefore, it seems that the global analysis of the upper extremity functions is not sufficient. Only a detailed qualitative assessment plays a significant role as it enables the detection of possible abnormalities in the development and implementation of an adequate plan of therapy.

The study showed following features: physiotherapeutic assessment is in good agreement with neurologic assessment; detailed analysis of elements combining into global function may reveal abnormalities; prone position seems more important in assessment, even in very small children. Suggested assessment sheet allows for quick and complex motor assessment of a child.

Conclusions
1. The assessment of support, taking into account qualitative elements, should be the basis of screening for newborns and infants.
2. The study shows that the swordsman pattern, described in the literature and presented as one of the elements present in the child’s development at the age of one month is not a necessary feature for the proper performance of the upper extremity function.
REFERENCES
Informed consent was obtained from all of the subjects and the study was approved by the Research Ethics Committee of Poznan University of Medical Sciences and registered under no. 602/13 (13-06-2013). It conformed to all ethical issues included in the Helsinki declaration.

Authors reported no source of funding. Authors declared no conflict of interest.

Author responsible for correspondence:
Magdalena Sobieska
Department of Rheumatology and Rehabilitation
Poznan University of Medical Sciences, 28. Czerwca 1956 r 135/147
61-545 Poznan, Poland
msobieska@ump.edu.pl

Autorzy nie zgłosili źródła finansowania. Autorzy nie deklarowali konfliktu interesów.

Autor odpowiedzialny za korespondencję:
Magdalena Sobieska
Katedra Reumatologii i Rehabilitacji
Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu
ul. 28. Czerwca 1956 r 135/147
61-545 Poznań, Polska
msobieska@ump.edu.pl