SHORT COMMUNICATION

20 YEARS OF RSP – THE 5 MOST IMPORTANT LESSONS I’VE LEARNED

20 LAT RSP – 5 NAJWAŻNIEJSZYCH LEKCJI, JAKICH SIĘ NAUCZYłem

Mark A. Frankle1,2, David E. Teytelbaum3,4, Peter Simon3,4, Jay S. Patel3,4
1Shoulder Service, Florida Orthopaedic Institute, United States
2Morsani College of Medicine, University of South Florida, United States
3College of Medicine, Florida State University, United States
4Research Department, Foundation for Orthopaedic Research and Education, United States

ABSTRACT

Introduction and aim
This paper reports on 5 key aspects to consider when planning a successful RSA procedure, including patient selection, glenosphere positioning, glenoid fixation, humeral fixation, and soft tissue management/tensioning.

Material, methods, results, and discussion
Key in patient selection for RSA is understanding the relationship between indications, outcomes, patient mental state, and their expectations. When placing a glenosphere, prioritize sound principles of shoulder kinematics but always consider bone preservation and ease of placement. Glenoid fixation must take advantage of structural features of individual implant designs while factoring in specific-bone morphology/morphometry to optimize the resultant glenohumeral loading. For the stem, fixation prioritizes press-fit where bone quality and quantity permit. Always aim to achieve anatomical pivot point restoration with planning for stem position and avoid distalization that may lead to nerve injury and scapular spine fractures.

Conclusions
To increase the chances of a successful RSA procedure, a surgeon should emphasize picking the right patient, placing the implant in an optimum position, ensuring adequate glenoid and humeral fixation, and correctly balancing soft tissues.

Keywords: reverse shoulder arthroplasty, surgeon education, patient optimization

STRESZCZENIE

Wstęp i cel
Niniejszy artykuł opisuje 5 kluczowych aspektów, które należy wziąć pod uwagę przy planowaniu udanej procedury RSA, w tym wybór pacjentów, pozycjonowanie stawu ramiennego, stabilizację panewki stawowej, stabilizację kości ramiennjej oraz zarządzanie przy napinaniu tkank miękkich.

Material, metody, wyniki i dyskusja
Kluczem w doborze pacjentów do RSA jest zrozumienie związku między wskazaniami, wynikami, stanem psychicznym pacjenta i jego oczekiwaniem. Podczas operacji stawu ramiennego
należy priorytetowo traktować zasady kinematyki barku, ale zawsze brać pod uwagę zachowa-
nie kości i łatwość umieszczenia. Mocowanie stawu ramiennego musi wykorzystywać cechy
strukturalne poszczególnych projektów implantów, jednocześnie uwzględniając specyficzną
morfologię/morfometrię kości, aby zoptymalizować wynikowe obciążenie kości ramiennej.
W przypadku mocowania trzpienia priorytetem jest jego dopasowanie tam, gdzie pozwala
na to jakość i ilość kości. Należy zawsze dążyć do osiągnięcia anatomicznej odbudowy punk-
tu obrotu z planowaniem pozycji trzpienia i unikać dystalizacji, która może prowadzić do
uszkodzenia nerwów i złamań.

Wnioski
Aby zwiększyć szanse na powodzenie zabiegu RSA, chirurg powinien położyć nacisk na wybór
odpowiedniego pacjenta, umieszczenie implantu w optymalnej pozycji, zapewnienie odpowied-
nego mocowania panewki i kości ramiennej oraz prawidłowe wyważenie tkanek miękkich.

Słowa kluczowe: odwrócona endoprotezoplastyka stawu barkowego, edukacja chirurga,
optymalizacja pacjenta.

Introduction and aim
Despite its late adoption in the United States (US), reverse shoulder arthroplasty (RSA) has
become the most common form of shoulder arthroplasty performed in the US. A study
done in 2011 estimated that out of the 66,485 shoulder arthroplasties performed that year,
33% were RSAs (Schairer et al., 2015; Westermann et al., 2015). This percentage has likely
increased substantially due to the wide range of indications added since 2011. Initial indica-
tions focused on rotator cuff arthropathy but have expanded to include inflammatory
arthritis, acute proximal humerus fractures, revision surgery, shoulder dysplasias, gleno-
humeral osteoarthritis with severe bone loss, aseptic necrosis, and chronic glenohumeral
dislocations (Ryan et al., 2020; Westermann et al., 2015). Charles Neer is often accred-
ted with the development of the first functional reverse prosthesis in the 1970s to
treat patients with rotator cuff arthropathy. After three failed iterations (Mark I, Mark II,
Mark III) of his prosthesis, he abandoned the idea concluding that rotator cuff repair was
superior in every aspect (Flatow et al., 2011). Meanwhile, Paul Grammont was developing
a reverse prosthesis design of his own. His reverse prosthesis was introduced in 1985 and
built upon the design of Neer’s prosthesis, focusing on 4 key principles: (1) the center
of rotation (COR) must be fixed, distalized, and medialized to the level of the glenoid
surface; (2) the prosthesis must be inherently stable; (3) the lever arm of the deltoid
must be effective from the start of the movement; and (4) the glenosphere must be large
and the humeral cup small to create a semi-constrained articulation (Boileau et al., 2009;
Grammont et al., 1987).

In 1991, Grammont further medialized the COR and coated the glenoid baseplate with
hydroxyapatite to improve fixation. This model was termed the Delta III (Flatow et al.,
2011). Whereas some of these principles are partly true today, many of them have proven
to be recommendations more than principles (Werthel et al., 2019). I have spent the last 20
years developing my principles and recommendations.

The aim of this review paper is to take the experience of performing RSAs for over 20
years and summarize it into 5 key concepts: patient selection, glenosphere positioning,
glenoid fixation, humeral fixation, and soft tissue management/tensioning.

Material, methods, results, discussion
Lesson 1: Patient Selection
After multiple iterations and re-designs, the RSA began to show significant improvements in clinical outcomes. Early reports provided some evidence that postoperative outcomes are related to indication (Wall et al., 2007; Boileau et al. 2009, Mulieri et al., 2010). The current list of expanding indications includes massive cuff tear without osteoarthritis (MCT without OA), massive cuff tear with osteoarthritis (MCT with OA), osteoarthritis (OA) with intact cuff, proximal humeral fracture, scapular fracture, severe glenoid bone loss, revision settings after hemiarthroplasty/anatomic total shoulder arthroplasty (TSA) and RSA, and tumor. While it may be enticing to offer it to all patients who remotely meet indications, it has been proven that specific patient factors are imperative to achieving satisfactory clinical outcomes. While positive postoperative outcomes of MCT with OA or OA with intact cuff are, from my experience, generally very predictable, it is necessary to make sure patients are emotionally invested in their care. This is inherently a mechanical problem, and I believe it is crucial for a patient to perceive they have control over it. When it comes to other diagnoses, two studies performed on my patient population solidified my patient selection algorithm. The first study helped me identify the risk factors that can lead to patients having unexpectedly poor outcomes following RSA for MCTs without OA. Hartzler et al. performed a retrospective case-control analysis requiring a minimum follow-up of 2 years to identify the risk factors associated with poor outcomes after RSA. A logistic regression model revealed that neurologic dysfunction (p = .006), high preoperative Simple Shoulder Test (SST, p = .03) score, and age < 60 years (p=.02) were often associated with poor functional improvement (Hartzler et al., 2015). It is crucial to mitigate patients’ expectations as good outcomes are less predictable. In the second study, Lindbloom et al. aimed to identify which pathologies may lead to unpredictable outcomes following RSA. This comparative study analyzed the clinical outcomes of 699 patients at a minimum of 2 years who underwent RSA. Outcomes were compared based on changes in preoperative vs. postoperative scores in ASES, SST, VAS scores for function, range of motion, and health-related quality-of-life measures. While every pathology-based patient group reported on average significant improvement in measured outcomes, ultimately, it was seen that females with malunion had poorer forward flexion (p < .05), and any patient with fractures had poorer satisfaction (p < .05) ultimately. Interestingly, male patients who underwent RSA for MCT without OA had poorer patient satisfaction as well (p < .05; Lindbloom et al., 2019). Lastly, when it comes to patients with MCT with preserved function, one needs to be cautious as postoperative outcomes tend to reflect an increase in dissatisfaction, loss of elevation (p < .0001; Boileau et al., 2009) and increase in postoperative complications (Mulieri et al., 2010).

Proper patient selection regarding indication, age, patient expectations, and clinical scoring tools undoubtedly have an integral role in satisfactory clinical outcomes.

Lesson 2: Glenosphere Positioning

Several aspects of glenosphere positioning have been found to yield a larger impingement-free abduction/adduction range of motion (ROM). Originally, Grammont believed that a medialized COR was imperative to increase the lever arm of the deltoid. Since then, many studies have argued for a more lateralized COR to secure the benefit of more impingement-free ROM at little to no loss of abduction. Some studies even found increased abduction forces with glenosphere COR lateralization (Tashjian et al., 2015). At my lab, Gutierrez et al. used a computer model to simulate abduction/adduction motion with 5 factors: location and tilt angle of the glenosphere on the glenoid, implant size, COR offset, and humeral neck-shaft angle. Two variables appeared on the top of the hierarchy of surgical and implant-related factors – lateralized glenosphere and 135-degree neck-shaft angle
(Gutierrez et al., 2008). With a follow-up study, Gutiérrez later concluded that for lateral and concentric glenospheres, inferior tilt provided the most even distribution of forces at the baseplate (Gutierrez et al., 2011).

From my experience, the optimal glenosphere positioning should aim to maximize the function of the implant, confer appropriate soft tissue tension, avoid excessive arm lengthening, minimize bone resection, maximize the implant fixation while being technically reproducible. However, it is imperative to distinguish significant variability in the optimization of glenosphere position between normal and abnormal anatomy. While the former prioritizes the close reproduction of the centerline, the latter focuses on the technical aspects of the surgery and maximization of fixation.

Lesson 3: Glenoid Fixation
After its adoption in the US, research regarding complications of the RSA quickly identified the glenoid side as the main culprit (Frankle et al., 2005). While patients reported a reduction in pain and improvement in functional outcomes as well as improvement in impingement-free range of motion, there were high rates of early mechanical failure (12%). This led me to re-evaluate the design and surgical technique with a focus on glenoid fixation. We identified three areas that, in my opinion, affect glenoid fixation the most: implant design, bone condition, and loading. Biomechanical studies showed that altered implant designs utilizing central compression screw coupled with 5 mm peripheral screws resulted in improved fixation due to the reduction in micromotion (Harman et al., 2006; Gutierrez et al., 2007). This was later confirmed in a prospective clinical study of RSA utilizing 5 mm peripheral locking screws for baseplate fixation and a lateralized COR (Cuff et al., 2008). No radiographic evidence of the mechanical failure of the baseplate or scapular notching was noted in any of the patients (cohort of 112 patients), showing that the current advances in RSA allow for improved patient outcomes while minimizing early mechanical failure. When it comes to the condition of the bone, both quality and quantity must be equally considered. While pre-operative assessment of bone quality may be sometimes challenging, it is often advisable to take advantage of intraoperative haptic feedback and adjust bone preparation by “under-preparing” the osteoporotic bone and “over-preparing” sclerotic bone. For bone quantity consideration, the extent and pattern of glenoid bone loss may directly affect glenoid fixation and lead to post-operative muscular imbalance. In cases of severely abnormal anatomy, where the standard centerline can no longer be a feasible option, one has three options to maximize fixation and achieve reproducible reconstruction: alternative center line increased load sharing or both. To compare the outcomes of RSA using the anatomic or an alternative center line for glenoid baseplate fixation, we conducted a retrospective case-controlled study of patients who underwent RSA with a minimum follow-up of two years (Colley et al., 2021). Patients treated via RSA with an anatomic center line vs. RSA with an alternative centerline were matched in a 3:1 fashion based on age, sex, and indication for surgery. The matched analysis (n = 66 for anatomic center line group, n = 22 for alternative center line group) found no differences in PROMs, including SST, ASES, SANE, and VAS scores. In addition, functional tasks of internal motion were not different between the two groups, and no radiologic evidence of glenoid loosening was found in either group (Colley et al., 2021).

Lesson 4: Humeral Fixation
The majority of technological advancements in RSA in the last two decades successfully diminished early mechanical failures and complications that arise from glenoid fixation. The first generation of RSA stem I used had a modular junction and was exclusively cemented. While the performance of this design was adequate, an increase in RSA use
resulted in a subsequent increase in RSA revisions which were more complex due to cemented stem. Furthermore, the expanded indications into the fracture and severe humeral bone loss made modular junction a potential design weakness. This prompted the introduction of a fully monolithic second-generation press-fitted stem. To evaluate the advancement in implant design and stem stability, a cohort comparison of 1st vs. 2nd generation humeral implant designs was conducted on my patients who underwent RSA n = 400 of whom received 1st generation cemented modular humeral implants and n = 231 of whom received 2nd generation monolithic, primarily uncemented implants (Gorman et al., 2021). This study showed that both implants led to equivalent, improved clinical outcomes. However, the incidence of humeral loosening in the cemented group (3.6%) was greater than that of the uncemented group (0.4%, p = 0.01). Additionally, 4.0% of shoulders treated with the cemented technique were revised, while only 1.5% of shoulders treated with the press-fit technique were revised (p = 0.028) (Gorman et al., 2021). When it comes to humeral stem revisions, especially when cement was used for the fixation of the primary stem, I learned that maintaining an intramedullary cement mantle may be of major advantage. In a retrospective review of all my patients who underwent revision of cemented RSA stem in the cement-within-cement technique, we first learned that an increase in cement volume during reimplantation and downsizing of the stem might lessen the chance of subsequent loosening and subsequent stem revisions (Gorman et al., 2020). Interestingly, this clinical finding significantly differed from my intraoperative assessment of stem stability, and as a result, we performed a biomechanical investigation into the matter. A 12 mm and 6 mm stem cemented within the previous cement mantle were tested in the biomechanical sawbones model for stability by applying torque for 1.000 cycles from 2.5 N-m to 17.5 N-m. Results showed superior stability of the larger stem (p < .001; Gorman 2020). Hence, my original recommendation of downsizing the stem has been corrected.

Lesson 5: Soft-tissue Management and Tensioning

Soft tissue management and tensioning are considered on a case-by-case basis when evaluating patients for RSA, both preoperatively and intraoperatively. For me, the principal goal of soft-tissue management is multi-faceted and includes re-tensioning of the cuff, improvements in range of motion, joint stabilization, preservation of shoulder contour, and improvements in impingement arc. Effective tensioning of the cuff muscles after RSA can be achieved through lateralization of either glenosphere, stem, or both. Henninger et al. directly compared the performance of two RSA systems with opposing magnitude of medialization/lateralization (Henninger et al., 2014). This cadaveric study tested seven pairs of shoulders on a biomechanical simulator and quantified changes in COR, the position of the humerus, passive and active ROM, and force required to abduct the ar, before and after implantation of an RSA design of interest. In both implants, COR was shifted inferomedially compared to the native shoulder, however medial shifts were greater in the medialized implant group (Aequalis, p < 0.037). All humeri were shifted inferiorly compared to native, with those in the medialized implant group also shifting medially (p < 0.001). Both implants reduced adduction of the shoulder, but the lateralized implant group did this to a lesser degree (DJO RSP, p = 0.046). Additionally, both implants reduced the force required to initiate abduction compared to native, however, the lateralized implant group required less force compared to the medialized implant group (p = 0.022). There were no differences in changes of internal rotation, external rotation, or peak passive abduction between the two systems. Further confirmation of the positive effect of the lateralized implant on the cuff re-tensioning was reported by (Gorman
et al., 2013). Based on the cadaver-based computer model, the authors concluded that cuff muscle tension was preserved with the lateralized RSA design. What about stability? In the biomechanical bone surrogate study, Gutierrez et al. aimed to evaluate the hierarchy of stabilizing factors when using RSA with different levels of lateralization. The study concluded that the joint compressive forces generated by rotator cuff muscle and deltoid is the principal stabilizing factor in RSA design (Gutierrez et al., 2007). Although implant lateralization (glenosphere and stem) seems to have a positive effect on cuff muscle tension, and this increase translates into deltoid lengthening, there are inherent risks associated with excessive distalization, namely, iatrogenic nerve injury and scapular spine fractures (Ladermann et al., 2012; Haidamous et al., 2020).

Conclusion
As in other developments in medicine, research in the field of RSA is ever-changing with advances every year. It is essential to build upon the knowledge of those with the most experience to advance the field of RSA further. In this paper, the understandings of a surgeon with 20 years of experience in RSA are distilled down to 5 key principles. In conclusion, to increase the chances of a successful RSA procedure, a surgeon should emphasize picking the right patient, placing an implant in an optimum position, ensuring adequate glenoid and humeral fixation, and correctly balancing soft tissues.

REFERENCES


